Performance Tuning¶
Learn how to optimize the Bluetooth SIG Standards Library for your use case.
When Performance Matters¶
Consider optimization when:
High-frequency parsing (>100 Hz notifications)
Processing many devices simultaneously (>50 devices)
CPU-constrained environments (embedded systems, edge devices)
Real-time requirements with tight latency constraints
When Performance Doesn’t Matter¶
Skip optimization for:
Single device, low frequency (<10 Hz)
Small number of characteristics (<10)
BLE I/O dominates (typically 10-100ms per operation)
Focus on correctness and maintainability over micro-optimizations
The library overhead (~200 μs per parse) is negligible compared to typical BLE I/O latency (10-100ms).
Optimization Strategies¶
1. Profile First¶
Always identify actual bottlenecks before optimizing:
import cProfile
import pstats
from bluetooth_sig import BluetoothSIGTranslator
translator = BluetoothSIGTranslator()
# Profile your code
profiler = cProfile.Profile()
profiler.enable()
# Your BLE parsing code here
for _ in range(1000):
result = translator.parse_characteristic("2A19", bytearray([75]))
profiler.disable()
stats = pstats.Stats(profiler)
stats.sort_stats("cumulative")
stats.print_stats(10)
2. Cache Characteristic Instances¶
For frequently-used characteristics, consider caching:
from bluetooth_sig import BluetoothSIGTranslator
translator = BluetoothSIGTranslator()
# Cache characteristic info to avoid repeated UUID lookups
battery_info = translator.get_sig_info_by_uuid("2A19")
temp_info = translator.get_sig_info_by_uuid("2A6E")
# Later, use cached info
# (Note: Current API doesn't expose direct parsing with cached info,
# but you can reuse UUID strings)
battery_uuid = "2A19"
result = translator.parse_characteristic(battery_uuid, data)
3. Parse Only Needed Characteristics¶
Don’t parse characteristics you won’t use:
from bluetooth_sig import BluetoothSIGTranslator
translator = BluetoothSIGTranslator()
# Example: Device sends many characteristics, but we only need a few
all_notifications = [
("2A19", bytearray([75])), # Battery Level - NEEDED
("2A6E", bytearray([0x54, 0x09])), # Temperature - NEEDED
("2A6F", bytearray([0x54, 0x09])), # Humidity - NEEDED
("2A23", bytearray([0x12, 0x34, 0x56, 0x78])), # System ID - not needed
("2A29", bytearray([0x41, 0x63, 0x6D, 0x65])), # Manufacturer - not needed
("2A50", bytearray([0x01, 0x02, 0x03, 0x04])), # PnP ID - not needed
]
# ❌ Bad: Parse everything (wastes CPU on unused characteristics)
for char_uuid, data in all_notifications:
result = translator.parse_characteristic(char_uuid, data)
# Parsed 6 characteristics but only use 3
# ✅ Good: Parse selectively (only what you need)
MONITORED_CHARS = {"2A19", "2A6E", "2A6F"} # Battery, Temp, Humidity
for char_uuid, data in all_notifications:
if char_uuid in MONITORED_CHARS:
result = translator.parse_characteristic(char_uuid, data)
4. Use Async for I/O-Bound Operations¶
When BLE I/O dominates, use async variants:
import asyncio
from bluetooth_sig import BluetoothSIGTranslator
async def process_device(device_address: str):
translator = BluetoothSIGTranslator()
async with BleakClient(device_address) as client:
# Read multiple characteristics concurrently
battery_data = await client.read_gatt_char("2A19")
temp_data = await client.read_gatt_char("2A6E")
# Parse (these are fast, no await needed)
battery = translator.parse_characteristic("2A19", battery_data)
temp = translator.parse_characteristic("2A6E", temp_data)
5. Consider Manual Parsing for Hot Paths¶
For ultra-high-frequency parsing (>1000 Hz), manual parsing may be faster:
# Library overhead: ~200 μs per parse
result = translator.parse_characteristic("2A19", data)
# Manual parsing: ~300 ns (no UUID resolution, no validation)
battery_level = data[0] # uint8, range 0-100
Trade-off: Lose automatic validation, UUID resolution, and structured data.
Running Benchmarks Locally¶
Profile your changes against the baseline:
# Run all benchmarks
python -m pytest tests/benchmarks/ --benchmark-only
# Run with detailed output
python -m pytest tests/benchmarks/ --benchmark-only -v
# Generate JSON report
python -m pytest tests/benchmarks/ --benchmark-only --benchmark-json=benchmark.json
# Save baseline
python -m pytest tests/benchmarks/ --benchmark-only --benchmark-autosave
# Compare with baseline
python -m pytest tests/benchmarks/ --benchmark-only --benchmark-compare=0001
# Fail if performance degrades >200%
python -m pytest tests/benchmarks/ --benchmark-only --benchmark-compare=0001 --benchmark-compare-fail=mean:200%
Future Optimizations¶
Potential improvements (if needed):
Cython compilation for critical parsing paths
Registry caching for frequently-used characteristics
Pre-compiled struct parsing for fixed-format characteristics
Parallel batch parsing for large batches
numpy integration for bulk data processing
Note: Current performance is adequate for typical use cases. Optimizations should be driven by real-world performance requirements.
Performance Targets¶
Based on common BLE use cases:
Use Case |
Parsing Frequency |
Target Overhead |
Status |
|---|---|---|---|
Environmental sensor |
1 Hz |
<1 ms |
✅ ~200 μs |
Fitness tracker |
10 Hz |
<10 ms |
✅ ~700 μs |
Multi-device (10) |
10 Hz each |
<100 ms |
✅ ~7 ms |
High-frequency (100 Hz) |
100 Hz |
<1 ms |
⚠️ Consider manual |
Performance Metrics¶
For detailed performance data and benchmarks:
See Also¶
API Reference - Complete API documentation
Testing Guide - How to test performance in your application